Extensions 1→N→G→Q→1 with N=C2xHe3 and Q=C23

Direct product G=NxQ with N=C2xHe3 and Q=C23
dρLabelID
C24xHe3144C2^4xHe3432,563

Semidirect products G=N:Q with N=C2xHe3 and Q=C23
extensionφ:Q→Out NdρLabelID
(C2xHe3):C23 = C22xC32:D6φ: C23/C2C22 ⊆ Out C2xHe336(C2xHe3):C2^3432,545
(C2xHe3):2C23 = C23xC32:C6φ: C23/C22C2 ⊆ Out C2xHe372(C2xHe3):2C2^3432,558
(C2xHe3):3C23 = C23xHe3:C2φ: C23/C22C2 ⊆ Out C2xHe372(C2xHe3):3C2^3432,561

Non-split extensions G=N.Q with N=C2xHe3 and Q=C23
extensionφ:Q→Out NdρLabelID
(C2xHe3).1C23 = C3:S3:Dic6φ: C23/C2C22 ⊆ Out C2xHe37212-(C2xHe3).1C2^3432,294
(C2xHe3).2C23 = C12:S3:S3φ: C23/C2C22 ⊆ Out C2xHe37212+(C2xHe3).2C2^3432,295
(C2xHe3).3C23 = C12.84S32φ: C23/C2C22 ⊆ Out C2xHe3726(C2xHe3).3C2^3432,296
(C2xHe3).4C23 = C12.91S32φ: C23/C2C22 ⊆ Out C2xHe3726(C2xHe3).4C2^3432,297
(C2xHe3).5C23 = C12.85S32φ: C23/C2C22 ⊆ Out C2xHe3726-(C2xHe3).5C2^3432,298
(C2xHe3).6C23 = C12.S32φ: C23/C2C22 ⊆ Out C2xHe37212-(C2xHe3).6C2^3432,299
(C2xHe3).7C23 = C4xC32:D6φ: C23/C2C22 ⊆ Out C2xHe3366(C2xHe3).7C2^3432,300
(C2xHe3).8C23 = C3:S3:D12φ: C23/C2C22 ⊆ Out C2xHe33612+(C2xHe3).8C2^3432,301
(C2xHe3).9C23 = C12.86S32φ: C23/C2C22 ⊆ Out C2xHe3366+(C2xHe3).9C2^3432,302
(C2xHe3).10C23 = C2xHe3:2Q8φ: C23/C2C22 ⊆ Out C2xHe3144(C2xHe3).10C2^3432,316
(C2xHe3).11C23 = C2xC6.S32φ: C23/C2C22 ⊆ Out C2xHe372(C2xHe3).11C2^3432,317
(C2xHe3).12C23 = C62.8D6φ: C23/C2C22 ⊆ Out C2xHe37212-(C2xHe3).12C2^3432,318
(C2xHe3).13C23 = C62.9D6φ: C23/C2C22 ⊆ Out C2xHe3726(C2xHe3).13C2^3432,319
(C2xHe3).14C23 = C2xHe3:2D4φ: C23/C2C22 ⊆ Out C2xHe372(C2xHe3).14C2^3432,320
(C2xHe3).15C23 = C2xHe3:(C2xC4)φ: C23/C2C22 ⊆ Out C2xHe372(C2xHe3).15C2^3432,321
(C2xHe3).16C23 = C2xHe3:3D4φ: C23/C2C22 ⊆ Out C2xHe372(C2xHe3).16C2^3432,322
(C2xHe3).17C23 = C62:D6φ: C23/C2C22 ⊆ Out C2xHe33612+(C2xHe3).17C2^3432,323
(C2xHe3).18C23 = C62:2D6φ: C23/C2C22 ⊆ Out C2xHe3366(C2xHe3).18C2^3432,324
(C2xHe3).19C23 = C2xHe3:3Q8φ: C23/C22C2 ⊆ Out C2xHe3144(C2xHe3).19C2^3432,348
(C2xHe3).20C23 = C2xC4xC32:C6φ: C23/C22C2 ⊆ Out C2xHe372(C2xHe3).20C2^3432,349
(C2xHe3).21C23 = C2xHe3:4D4φ: C23/C22C2 ⊆ Out C2xHe372(C2xHe3).21C2^3432,350
(C2xHe3).22C23 = C62.36D6φ: C23/C22C2 ⊆ Out C2xHe3726(C2xHe3).22C2^3432,351
(C2xHe3).23C23 = D4xC32:C6φ: C23/C22C2 ⊆ Out C2xHe33612+(C2xHe3).23C2^3432,360
(C2xHe3).24C23 = C62.13D6φ: C23/C22C2 ⊆ Out C2xHe37212-(C2xHe3).24C2^3432,361
(C2xHe3).25C23 = Q8xC32:C6φ: C23/C22C2 ⊆ Out C2xHe37212-(C2xHe3).25C2^3432,368
(C2xHe3).26C23 = (Q8xHe3):C2φ: C23/C22C2 ⊆ Out C2xHe37212+(C2xHe3).26C2^3432,369
(C2xHe3).27C23 = C22xC32:C12φ: C23/C22C2 ⊆ Out C2xHe3144(C2xHe3).27C2^3432,376
(C2xHe3).28C23 = C2xHe3:6D4φ: C23/C22C2 ⊆ Out C2xHe372(C2xHe3).28C2^3432,377
(C2xHe3).29C23 = C2xHe3:4Q8φ: C23/C22C2 ⊆ Out C2xHe3144(C2xHe3).29C2^3432,384
(C2xHe3).30C23 = C2xC4xHe3:C2φ: C23/C22C2 ⊆ Out C2xHe372(C2xHe3).30C2^3432,385
(C2xHe3).31C23 = C2xHe3:5D4φ: C23/C22C2 ⊆ Out C2xHe372(C2xHe3).31C2^3432,386
(C2xHe3).32C23 = C62.47D6φ: C23/C22C2 ⊆ Out C2xHe3726(C2xHe3).32C2^3432,387
(C2xHe3).33C23 = D4xHe3:C2φ: C23/C22C2 ⊆ Out C2xHe3366(C2xHe3).33C2^3432,390
(C2xHe3).34C23 = C62.16D6φ: C23/C22C2 ⊆ Out C2xHe3726(C2xHe3).34C2^3432,391
(C2xHe3).35C23 = Q8xHe3:C2φ: C23/C22C2 ⊆ Out C2xHe3726(C2xHe3).35C2^3432,394
(C2xHe3).36C23 = He3:5D4:C2φ: C23/C22C2 ⊆ Out C2xHe3726(C2xHe3).36C2^3432,395
(C2xHe3).37C23 = C22xHe3:3C4φ: C23/C22C2 ⊆ Out C2xHe3144(C2xHe3).37C2^3432,398
(C2xHe3).38C23 = C2xHe3:7D4φ: C23/C22C2 ⊆ Out C2xHe372(C2xHe3).38C2^3432,399
(C2xHe3).39C23 = C22xC4xHe3φ: trivial image144(C2xHe3).39C2^3432,401
(C2xHe3).40C23 = C2xD4xHe3φ: trivial image72(C2xHe3).40C2^3432,404
(C2xHe3).41C23 = C2xQ8xHe3φ: trivial image144(C2xHe3).41C2^3432,407
(C2xHe3).42C23 = C4oD4xHe3φ: trivial image726(C2xHe3).42C2^3432,410

׿
x
:
Z
F
o
wr
Q
<